

ASX Announcement

27 August 2024

150m at 375ppm Moly including 20m at 2,080ppm Mo at Llahuin Copper-Gold-Moly Project, Chile

Highlights

- > A recent pulp compositing campaign utilising pXRF assays to highlight significant zones of Molybdenum (Mo or Moly) in historic drilling where Mo was not previously assayed, and pulps then sent to ALS for assay
- Better intercepts include:
 - 150m at 375ppm Mo from 20m in drillhole RDLLA014 including 20m at 2,080ppm Mo from 80m
 - 20m at 756ppm Mo from 110m in drillhole DDLLA018
 - 70m at 256ppm Mo from 80m in drillhole RCLLA117
- The data shows the Moly is located in a ring around the edge of the core of the Central Porphyry deposit and a positive upside for the upgrade to the JORC resource in progress for H1 2025

Southern Hemisphere Mining Limited ("Southern Hemisphere" or "the Company") (ASX: SUH, FWB: NK4) reports encouraging results from re-assaying pulp composites at its Llahuin Copper-Gold-Moly Project in central Chile.

Figure 1. Location map of SUH projects in South America.

Results Discussion

A recent pulp compositing campaign highlighted significant zones of Moly in historic drilling that were not previously assayed. Only copper and gold were assayed at the time under prior company management.

The Moly price is currently ~\$21/lb vs Copper at ~\$4.20/lb so Moly is significant in context of Copper equivalent grade, and these results and others in progress will be included in the upgraded JORC resource for H1 2025.

A total of 450 ten metre pulp composites covering 4,500m drilling were sent for multielement assay. All results have been received and demonstrate a significant zone of Molybdenum at the Central Porphyry in a ring like zone around the edge of the main porphyry. The ALS laboratory in Santiago completed the four-acid digest, ICPMS multielement assays. These new assays will be incorporated into the new resource model.

Significant results are:

- 150m at 375ppm Mo from 20m in historic drillhole RDLLA014 including 20m at 2,080ppm Mo from 80m.
- 20m at 756ppm Mo from 110m in drillhole DDLLA018.
- 70m at 256ppm Mo from 80m in drillhole RCLLA117.
- 40m at 155ppm Mo from 90m in drillhole RCLLA134.

(All Copper and Gold results and other details for these holes and in the map below were previously reported to ASX 18 August 2013- 43-101 resource).

Figure 2. Moly (pink colour) in Central Porphyry sitting on edge of the main porphyry body.

This has also highlighted areas where the Central Porphyry deposit is potentially open to the east/south-east and locations for new drillholes targeting an increase in tonnes and grade.

Background Work and Ongoing Programs

The rockchip sampling program to refine the Cerro-Ferro and Southern Porphyry deposit footprint model has been completed and final assay results are due next week. This program aims to define the nature and extent of the mineralising systems at the Cerro-Ferro and at the Southern Porphyry, which is a very large greenfield opportunity at the Llahuin Project. Fathom geophysics will complete the modelling once the laboratory results have been received which will vector drilling plans for the upcoming drill program later this quarter.

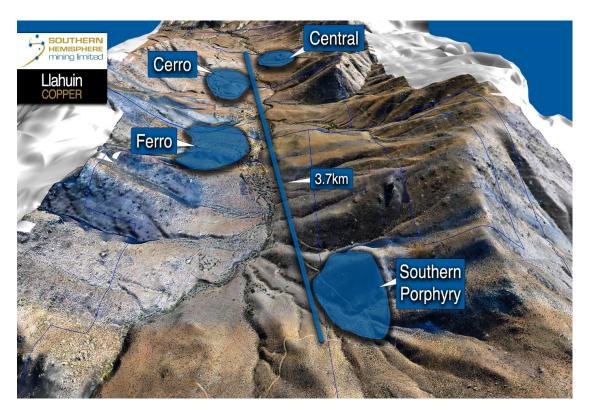


Figure 3. 3D view looking northeast from Southern Porphyry (SP) to Central Porphyry, showing the scale of the Llahuin mineralising system.

Further modelling, drilling and other results will be reported in due course.

Approved by the Board for release.

CONTACTS:

For further information on this update or the Company generally, please visit our website at www.shmining.com.au or contact the Company :

cosec@shmining.com.au Telephone: +61 8 6144 0590

BACKGROUND INFORMATION ON SOUTHERN HEMISPHERE MINING:

Southern Hemisphere Mining Limited is an experienced minerals explorer in Chile, South America. Chile is the world's leading copper-producing country and one of the most prospective regions of the world for major new copper discoveries. The Company's projects include the Llahuin Porphyry Copper-Gold Project and the Los Pumas Manganese Project, both of which were discovered by the Company.

Llahuin Copper/Gold/Moly Project: Total Measured and Indicated Resources - JORC (2004) Compliant. As announced to the market on 18 August 2013.

Resource (at 0.28% Cu Equiv cut-off)	Tonnes Millions	Cu %	Au g/t	Mo %	Cu Equiv*
Measured	112	0.31	0.12	0.008	0.42
Indicated	37	0.23	0.14	0.007	0.37
Measured plus Indicated	149	0.29	0.12	0.008	0.41
Inferred	20	0.20	0.19	0.005	0.36
Total M+I+I	169	0.28	0.128	0.008	0.40

Note: *Copper Equivalent ("Cu Equiv"): The copper equivalent calculations represent the total metal value for each metal, multiplied by the conversion factor, summed and expressed in equivalent copper percentage. These results are exploration results only and no allowance is made for recovery losses that may occur should mining eventually result. It is the Company's opinion that elements considered have a reasonable potential to be recovered as evidenced in similar multi-commodity natured mines. Copper equivalent conversion factors and long-term price assumptions used are stated below:

Notes on copper recovery from historical test work

- "Recoveries of copper vary between 75% Cu and 91% Cu with the weighted average of the results being 84% Cu, which is a typically acceptable commercial level";
- · "Recoveries of gold vary between 41% Au and 57% Au, which is in line with expectations given the relatively low gold grades within the deposit"; and
- "Flotation concentrates produced during testing contained the resource weighted average copper grade of 28% Cu and 4.9g/t Au. They also contained low levels of deleterious materials in the concentrate. Given that these tests were designed to set parameters and were not optimised, the results indicated good flotation process characteristics".
 Copper Equivalent Formula= Cu % + Au (g/t) x 0.72662 + Mo % x 4.412 Price Assumptions- Cu (\$3.20/lb), Au (\$1,700/oz), Mo (\$12.50/lb)

Los Pumas Manganese Project: Total Measured and Indicated Resources - JORC (2012) Compliant. As announced to the market on 3 May 2023.

Resource (at 2.5% Mn cut-off)	Tonnes	Mn %	Al%	Fe2O3%	К%	Р%	SiO2%	SG%
Indicated	23,324,038	6.21	5.71	2.78	2.98	0.05	57.07	2.15
Inferred	6,940,715	6.34	5.85	3.05	2.83	0.05	54.61	2.14
Indicated plus Inferred	30,264,753	6.24	5.74	2.84	2.95	0.05	56.50	2.15

Total JORC Resources for the Los Pumas Manganese Project at a 2.5% Mn cut-off.

In relation to the above resources, the Company confirms that it is not aware of any new information or data that materially affects the information in the announcements, and all material assumptions and technical parameters in the announcements underpinning the estimates in the relevant market announcement continue to apply and have not materially changed.

COMPETENT PERSON / QUALIFIED PERSON STATEMENT:

The information in this report that relates to copper and gold exploration results for the Company's Projects is based on information compiled by Mr Adam Anderson, who is a Member of The Australasian Institute of Mining and Metallurgy and The Australian Institute of Geoscientists. Mr Anderson has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration, and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Anderson is a consultant for the Company and consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

For further information, please refer to the Technical Reports and News Releases on the Company's website at www.shmining.com.au.

Appendix 1 Drillhole Data

Drillhole						
ID	East	North	RL	Azimuth	Dip	Depth
RDLLA014	307664.598	6531331.621	1339.823	61.0	-61.0	557.5
DDLLA018	307121.642	6530711.491	1358.539	61.0	-59.0	202.5
RCLLA117	307213.730	6529460.800	1458.000	180.0	-61.0	228.0
RCLLA134	307306.250	6529557.960	1430.000	100.0	-59.0	204.0

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Historical riffle split RC samples were collected for each metre of RC drilling to obtain 1 m samples from which approx. 4kg was split and sent to the ALS laboratory in Chile. The 4kg sample is crushed to -2mm from which a 1kg sample is split and pulverized to 85% passing -75µm and a 30g charge is taken for standard fire assay with AAS finish. Any multi-element assays are done using Multi-Element Ultra Trace method combining a four-acid digestion with ICP-MS instrumentation. A four-acid digest is performed on 0.25g of sample to quantitatively dissolve most geological materials. Elements and detection limits are presented below. Drillcore is cut in half with a diamond saw and the same side of the half core is sampled on a one or two metre intervals. Historical RC samples are collected at 1m intervals from RC-LLA-001 to RC-LLA-014 and then 2m intervals in RC holes numerically thereafter. Historical RC drilling samples were collected on a 2m basis and split to around 3kg using a single tier riffle splitter and sent to ALS Chile for sample preparation and analysis. Samples are dried at 70 degrees Celsius for up to 24hrs then the entire sample is crushed to -2mm and a 1kg sample is split and pulverized to 80% passing 150mesh. A 400 gram pulp is split off and a 30gram charge taken for Fire Assay and Cu and Mo with all assays by AAS. The AAS analytical procedures are ISO 9001:2008 certified and are in accordance with ISO/IEC 17025 Samples of the historical drillcore recently sampled were half HQ core samples on a one metre basis and were submitted to ALS in La Serena. Samples are dried at 70 degrees Celsius for up to 24hrs then the entire sample is crushed to -2mm and a 1kg sample is split and pulverized to 80% passing 150mesh. A 400 gram pulp is split off and a 30gram charge taken for Fire Assay and multi element assays using ICPMS and OES. RC samples for drilling completed in 2021 and 2022 at Llahuin were collected on a 1m basis and put through a three tier "Jones type" riffle spl

Criteria	JORC Code explanation	Commer	ntary										
		above ICPM eleme surface Recer or old collect photo The st log th crushe passir assay Eleme instruit quant limits	e. Ass S finits. Etc drill the trock work ted or graph ample e sar ed to mg -75 with ent UI menta itative are pr	ays we shall for the sample sh	rere in regold ants are oles were in the fapproxagged re an a finish acc m A four steel better the resolvent of the resolvent teles in the resolvent from a finish acc m A four steel better the resolvent from the resolvent	dustry land detrere als e collectield. A simulate and saverage their tanders. Any nethod most	stand ALS ection so ass cted u ddition 200m ent to e wei rackin a 1k m ch multi comil dige geolo	dard f multi multi sayed ising onal ro o ALS ght of ng sy kg sai harge i-elen bining st is ogical	our ad-elements are differed a geo ockche 200m ockche 200m ockche a Statement at all a for a for performant are differed a for performant are differed a for	cid dige ent me preser cid soli logical ips for spaced Gerna L The lat and d is split ken for assays ur-acid rmed of	est an ethod hamile the Falgrid aborate ry the and are diges on 0	d Fire MEM below. coppe mer from the attory ory proem the pulver istry sidone stion value.	re described e Assay with MS61 for 48. Some near r. om outcrops n study were samples are for analysis. ocedure is to en they are rized to 85% standard fire using Multiwith ICP-MS of sample to nd detection
			od Code		Analyte Au		Unit		Low	ver Limit 0.005		pper Limit	10.0
				10			ррп	'		0.00	,		10.0
		ME-MS6	1 Analytes	and Report Lower	ing Ranges Upper			Lower	Upper			Lower	Upper
			Units	Limit		Analyte		Limit	Limit	Analyte	Units	Limit	Limit
		Ag	ppm	0.01	1000	Al	%	0.01	50	As	ppm	0.2	10000
		Ba Ca	ppm %	0.01	50	Be Cd	ppm ppm	0.05	1000	Bi Ce	ppm	0.01	500
		Co	ppm			Cr	ppm	1	10000	Cs	ppm	0.05	500
		Cu	ppm	0.2	10000	Fe	%	0.01	50	Ga	ppm	0.05	10000
		Ge	ppm	0.05	500	Hf	ppm	0.1	500	In	ppm	0.005	500
		K	%	0.01	10	La	ppm	0.5	10000	Li	ppm	0.2	10000
		Mg	%	0.01	50	Mn	ppm		100000	Мо	ppm	0.05	10000
		Na	%	0.01	10	Nb	ppm	0.1	500	Ni	ppm	0.2	10000

Criteria	JORC Code explanation	Co	mmen	tary										
			P	ppm	10	10000	Pb	ppm	0.5	10000	Rb	ppm	0.1	10000
			Re	ppm	0.002	50	S	%	0.01	10	Sb	ppm	0.05	10000
			Sc	ppm	0.1	10000	Se	ppm	1	1000	Sn	ppm	0.2	500
			Sr	ppm	0.2	10000	Ta	ppm	0.05	500	Te	ppm	0.05	500
			Th	ppm	0.01	10000	Ti	%	0.005	10	Tl	ppm	0.02	10000
			U	ppm	0.1	10000	V	ppm	1	10000	W	ppm	0.1	10000
			Y	ppm	0.1	500	Zn	ppm	2	10000	Zr	ppm	0.5	500
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	•	Pulp c 10grar bag fo and re for ass digest Recen a face 2023 F using a diamo Histori three c and R diamo drilling drilling using t	ompoms is responsive the last same an ED differed Muring an Reference the transfer of the tran	nesites meas requir a Oly a s as drilling pling of the compart of	were coured be ded ten ample say at gwas con acros acr	collectory electory e	ed froi etronice e inter- ries Va e pulp n Sant eted u n a 5.2 was ong a fa gyear a Llahu nies. T RC of size a Munoz tube e oried d crayo	m the scale val. The compliago. sing a 25 inch compliace sa 44). In Professional way a usin technon me	Llahui e and phe pulp be pulp in Schranding in Schranding eted by impling included just and as not gust as not ethod as	in pulpout into p complete process then amm 6 eter bit y DV Eg hamre eter be diamo orient and the Orien and fou	library a new cosite als wer sent for 85 RC t by R Drilling mer an as bee Sonda and dr ated. F 710 e core tations and to a	y when y paper is their is their or four drilling Muño from I id a Formajes, Cilling. Recen model was a were match	g rig using z drilling. La Serena ordia 1400 Ipleted by Geosupply Historical t diamond diamond orientated e checked very well.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	•	recov samp relation excel	ery is le se onship lent. <i>I</i>	acce parati betv boos	eptable on be veen s ster ar	e. RC tween sample nd aux	driller each e recc tiliary	lifts of metrovery complex	off beto e. The and go ressor	ween ere do rade a were	each r esn't is sam utilized	metre appea iple re	to ensure to ensure r to be a ecovery is ep all RC d as such

Criteria	JORC Code explanation	Commentary
		 when the hole went wet the RC was stopped and the hole was extended with a HQ size diamond tail where necessary. Historical RC drilling encountered water table ie wet samples between 20 to 100m depth. The water table is generally encountered between 20m and 100m from surface. Where the water table is encountered, a rotary splitter is used to assist with RC sample quality. Approximately sixty percent (60%) of the RC samples are reported to be wet. This issue has been partially remediated by using diamond drilling in preference to RC drilling for all further historical resource definition drilling. AMS concluded no significant bias in using the wet RC drill holes. Historical RC and DC drilling and data collection methods applied by SHM have been reviewed by AMS during successive site visits for the historical drilling. All recent diamond drilling core recovery was measured to be approx. 95%. Recent diamond drilling showed assays to be less than expected for gold at Colina2 and the sludge from the coresaw was sampled and sent to ALS La Serena for gold analysis. Samples of the drilling sludge were also collected in 3m downhole intervals to check the amount of gold in the outside return. Both types of samples were assayed for gold returned values of 0.512 g/t gold from the coresaw sludge sample and from 0.05 to 1.87 g/t gold in the drilling sludge samples. The core from holes 22CLDD026 to 029 was split using a core splitter to reduce gold being lost in the coresaw. Sample bias to lower grades is therefore evident with gold being lost in the drilling process and the core cutting process. RC will be utilized as the preferred drilling technique in future drilling programs.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 The samples were geologically logged on site. Logging was both qualitative and quantative in nature for both recent drilling and historical drilling. All drillcore and RC drillholes were logged in entirety. All core was photographed and the photographs catalogued.
Sub-sampling techniques	 If core, whether cut or sawn and whether quarter, half or all core taken. 	 RC samples were collected into a green plastic bag which is then riffle split into a numbered calico bag for each metre of drilling. The majority of the RC

Criteria	JORC Code explanation	Commentary
and sample preparation	 If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	samples were dry as holes were stopped if the RC drilling went wet. If significant groundwater was encountered an auxiliary compressor and booster were utilized to keep the sample dry. Field duplicates were not collected but can be split later to confirm results. Historical DC samples are taken on 2m intervals. In some places, this sample interval overlaps lithological contacts, although contacts are hard to determine in places due to pervasive alteration. Historical drill core has not been orientated for structural measurements. The core is cut lengthways with a diamond saw and half-core is sent for assay. The half-core is bagged every 2m and sent for preparation, while the remaining half-core is returned to the labelled cardboard core box. A cardboard lid is placed on the box, and it is stored in a newly constructed weatherproof storage facility (warehouse) for future reference. There is no relationship between the sample size and the grain size of the material being sampled at Llahuin. Recent HQ3 diamond drilling at Colina was initially cut with an industry standard core saw until it was realized that gold was being lost in the core saw and a core splitter was used after hole 22CLDD025. Sample size is considered important with nuggety gold and thus one hole (22CLDD026) had whole core submitted to see if the gold grades improved. No apparent difference was seen in the gold grade. Compared to the RC drilling where much higher grades were intersected it is thought the much larger sample size of the RC (30kg/metre vs 3kg for the core) is a more representative sample.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 The assay technique utilized is "industry Standard" fire assay with AAS finish for gold which is a total digestion technique. For the recent RC drilling appropriate industry standard CRM's and blanks were inserted into the sample stream at a rate of approximately 1:20 samples for both standards and blanks. This is considered above industry standard for the recent drilling and there is no apparent bias of any significance at Llahuin. Historical drilling - Blanks and field duplicates are inserted at irregular intervals, at a range of between 1:20 and 1:40. A total of 1,738 laboratory standards have been analysed in a large variety of Cu and Au grade ranges, and there is no apparent bias of any significance (AMS June 2013) A total of 462 blanks have been inserted into the sample stream (RC and DDH).

Criteria	JORC Code explanation	Commentary
		 Recent diamond core samples had CRM's and blanks inserted at a rate of approximately 1:20. Additionally coarse crush duplicates of the DDH samples were split by ALS and assayed to give duplicate data at 1:20. Duplicate data shows a very good comparison. A total of 77 Umpire assays were completed at 1:40 for recent RC and diamond core sample by Andes Analytical Assay in Santiago and showed correlation coefficients for the paired data for all elements was above 0.9.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 The company's exploration manager (QP) has made several site visits and inspected the sampling methods and finds them up to industry standard for all the recent drilling. Ian Dreyer completed a site visit in October 2023 and reviewed the new drilling and some of the better historical intersections. Prior to March 2012, DDH was performed predominantly as tails at the termination of some of the RC holes. DDH performed from April 2012 has been from the surface with a total of 4 diamond drill holes twinned to preexisting RC drill holes. Twin hole drilling was completed across the Central Porphyry and Cerro De Oro zones. AMS concluded that there is insufficient data to make a definitive comparison, and that the twins are sufficiently far enough apart to explain some of the grade differences. No new drilling has been twinned yet. Logging is completed into standardized excel spreadsheets which can then be loaded into an access front end customized database. There have been no adjustments to the assay data. Historical sampling and assaying techniques were independently verified by Mr. Bradley Ackroyd of Andes Mining Services who undertook a site visit to the Llahuin Copper-Gold Project between 5th and 8th of May 2013. He inspected the drill sites, drill core and chips, logging, sample collection and storage procedures as well as the office set-up and core processing facilities. Mr. Ackroyd also observed all the available surface exposures of the deposit across the Llahuin project area. In addition, Mr. Ackroyd undertook a short review of the quality control and assurance procedures employed at the project site. No adjustments have been made to the assay data.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	A licensed surveyor was employed to pick up the new drillhole locations. The survey was performed by Mr. Luciano Alfaro Sanders using a total station instrument. The collars picked up to within 0.1m accuracy. This accuracy was not able to be checked, however the relative positions of the drill holes has been confirmed during the site visits. The recent (2021-2023) drilling collar surveys were done by Misure a

Criteria	JORC Code explanation	Commentary
		company from La Serena using an RTK total station. Downhole surveys were done by Misure using a downhole gyroscope. Rockchips and soil samples are located with a Garmin handheld GPS unit accurate to 3m which is considered good enough for the type of exploration work being done.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 The recent drillhole spacing is approx. 20 to 40m spaced holes in various locations. Drilling was completed within an existing resource and scout type drilling was completed in previously undrilled areas at Llahuin. Historical drilling was completed at The Central Porphyry, Cerro de Oro and Ferrocarril zones have been drilled on a nominal spacing of 50m by 50m in the upper portions and 100m x 100m in the lower portions of the deposits. No sample compositing has been applied in the recent drilling and 2m composites were taken in the majority of the historical drilling. Rockchips typically don't have a set sample spacing as they are taken from outcrops. Some continuous chip samples were taken along road cuttings. The soil sampling grid used an initial 200m by 50m grid with final infill typically 50m by 25m.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	The drilling was done perpendicular to the interpreted strike of the mineralisation to reduce sampling bias.
Sample security	The measures taken to ensure sample security.	 Samples were collected by a qualified consulting geologist and the samples were delivered to the lab by a company employee. Competent Person Reg No 0336. Recent samples from 2021-2023 are taken to ALS La Serena by a company representative in a company supplied vehicle.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 Andes Mining Services completed an external audit and review in 2013 of the historical drilling and sampling procedures. Ian Dreyer reviewed the current sampling procedures and concluded they were acceptable to industry standard. The QP has reviewed the current QAQC data and found the data to be acceptable.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Llahuin Project is 100% owned by SUH. The security of tenure is considered excellent as the licence is 100% owned by SUH. There are no known impediments to obtaining a licence to operate in the area.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Previous drilling on the licence by SUH has been done to industry standard as per AMS report (SUH press release 19th August 2013).
Geology	Deposit type, geological setting and style of mineralisation.	 Exploration is targeting porphyry Cu-Au Porphyry style mineralization hosted in Miocene intrusives (diorite) at Llahuin and potential IOCG type gold copper and gold mineralisation at Colina2.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	Appendix 1
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of 	 No data aggregation methods have been used. A copper equivalent in the Mineral Resource Estimate is reported using the following metal prices Cu \$3.20/lb, Au \$1,700/oz and Mo \$12.50/kg. The copper equivalent for the rockchips is reported using Cu \$3.20/lb, Au \$1,650/oz and Ag \$20/oz. The copper equivalent for the 2023 drilling is reported using Cu

Criteria	JORC Code explanation	Commentary
	 such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	\$3.77/lb, Au \$1,900/oz, Ag \$23/oz and Mo at \$17/lb.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Exploration drilling was targeting near surface material in a porphyry Cu-Au system. Therefore the mineralised widths are much greater than the drillhole depths for the Central Porphyry. Drilling at Cerro De Oro is partly infilling historical drilling so therefore downhole widths have been reported and true widths are not established yet as the historical drilling appears to be too widely spaced. Drilling in all areas has been conducted perpendicular to the regional trend observed in outcrop. Exploration at Colina2 was targeting potential IOCG type gold and recent drilling was orientated perpendicular to the regional trend observed in outcrop.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Appropriate maps have been included in the release.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	A range of grades were included in the release.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 A drone magnetics survey was completed over the project area in 2021 by GFDas UAV Geosciences Santiago Chile. Survey specifications provided below. Company: GFDAS Drones and Mining Line direction: 90°-270° Line separation: 25m Tie line Direction: 0-360 Tie lines separation: 250m Flight Height: around 25m AGL following topography (according to operational safety conditions) Registration Platform Mag: DJI M300 Drone Registration Platform Topo/ortho: DJI Phantom RTK Pro Drone Geoidal Model: EGM08 Flight speed: 5-10m/s Mobile sampling: Fluxgate magnetometer, 25 Hz Resolution: Digital Elevation Model 1 m and Resolution: Orthophoto with 20 cm/pixel

Criteria	JORC Code explanation	Commentary
		Base sampling: Geometrics magnetometer sampling 30s. Positioning: Phantom 4 RTK
		Survey Module: The flight module uses a VTOL drone, powered by rechargeable electric batteries and a positioning system with three GPS antennas. The registration module was miniaturized, simplified and made of low weight components suitable for lifting by the drone. These correspond to the magnetometer, acquirer and analogue-digital converter.
		Magnetic Survey: The data was corrected for Diurnal variances, micro levelled with the use of the tie lines by GFDAS Drones and Mining. They also applied the Reduction to the Pole process on the data (inclination -32.3° and 0.4° declination) that was supplied to our company.
		Topographic flight plan: Due to the strong differences in the elevations of the terrain, it was flown from different points within the north-south polygons with differentiated flight height, to achieve a pixel resolution as requested. These flight heights had a range between 350 m and 460 m (AGL flight height). The overlaps of flight lines were between 75% and 80%, this was done depending on the flight height and detail required.
		• Fathom Geophysics applies its proprietary 3D porphyry footprint modelling method on recently collected rock chip and drillhole pulp data at Llahuin. This method uses eleven elements (As (arsenic), Bi (bismuth), Cu (copper), Li (lithium), Mo (molybdenum), Sb (antimony), Se (selenium), Sn (tin), Te (tellurium), TI (thallium), and W (tungsten), to map idealised deposit model zonation and thresholds based on the Halley et al., (2015) geochemical model. Deliverables from this work are a set of wireframe shells representing probabilities of the presence of a porphyry system at a given point in 3D space.
		 A bulk density sampling program for historical and new drillcore was completed for every 20m downhole. The BD measurements for this program were completed by ALS in La Serena method OA-GRA08a. A total of 511 new samples were measured and combined with the historical 232 samples (743 total) with an average BD of 2.67. Summary of Historical Metallurgical testwork results

Criteria	JORC Code explanation	Co	mmentary							
			Metallurgical <u>Testwork</u> - <u>Llahuin</u> Copper-Gold Project ^{(,} Closed Loop Flotation <u>Testwork</u> (Diamond Drill Core Samples)							
				% of ∉ Resource	Feed Grade	Feed ⊬ Grade g/t ⊬ Au	Cu ⊲ Recovery %	Au ⊲ Recovery %	Concentrate Grade % Cu	Concentra Grade g/t
			UGM-01	37	0.46	0.142	85	47	32	6.1 ↔
			UGM-02	11	0.44	0.150	91	57	31	8.8 ↔
			<u>UGM-03</u> /06	11	0.28	0.067	75	52	16	2.6 ↔
			UGM-04	13	0.33	0.046	81	41	28	2.3 ↔
			UGM-09	16	0.33	0.066	88	41	26	3.4 ↔
		_	TOTAL/WT AV.	88	0.39	0.106	84	47	28	4.9 ↔
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	•	Follow up drilling of extensions to known mineralisation is planned for Llahuin. Geochemical footprint modeling is in progress Additional rockchip sampling is being evaluated. Pulp composite assaying							